
Volume 2: PROGRAMMING INFORMATION
Part 2: PROGRAM DESCRIPTIONS
Section 7: QSQRT(B6)
Contents
Page
Chapter 1: DESCRIP TION

1. 1 Introduction 1
1.1.1 Purpose 1
1.1.2 Form of Distribution 1
1.1.3 Method of Use 1
1.1.4 Accuracy 1
2. 3. 5 Notation 1
1.2 Functions. 1
1.2.1 Entry and Exit 1
1.2.1.1 Double-1ength Working 1
1.2.1.2 Single-length Working 2
1.2.2 Identifiers 2
1. 3 Error Indication 2
1.4 Method Used. 2
1.4.1 General Case 2
1.4.2 Special Cases 2
1.5 Time Taken 3
1.6 Store Used 3

Chapter 1: DESCRIPTION

1. 1 INTRODUCTION

1.1.1. Purpose.

QSQRT(B6) is used to calculate the single-1ength square-root of a single-length or double-length fraction.

1. 1.2 Form of Distribution.

The program is distributed as a machine- code program for input by Elliott SIR or by T2.
1.1. 3 Method of Use.

QSQRT is assembled as a block of the user's program and entered as a sub-routine. It may be run at any program-level and in any store-module.

Two entry points are provided for single-length and double=length working.
1.1.4 Accuracy.

The maximum error is $\pm 2^{-1 \%}$.
1.1.5 Notation.

The operand is denoted by a and, if the operand is double-length, the most significant half is denoted by a (m.s.), and the least significant half by a (1. so).
1.2 FUNCTIONS
1.2. 1 Entry and Exit.
1.2.1.1 Double-1ength Working. For (SIR) For (T2)

Entry Place a (1.s.) in QSQRT+3 $3 ; N$
Place a (m. s.) in the accumulator
Place link in QSQRT 0;N
Jump to , QSQRT+1 1:N
Exit The result is held, single-length, in the accumulator and also in \quad QSQRT+45 $45 ; \mathrm{N}$ a (m.s.) is in QSQRT+4 $4 ; N$ a (1. s.) is in \quad QSQRT+3 $3 ; N$
1.2.1.2 Single-1ength Working

Entry Place a in the accumulator Place link in QSQRT $0 ; N$ Jump to \quad QSQRT+2 $2 ; N$

Exit The result is held, single-length, in the accumulator and also in \quad QSQRT+45 $45 \% \mathrm{~N}$ a is in \quad QSQRT+4 $4 i N$
1.2.2 Identifiers.

In a SIR program, QSQRT must be declared as a global identifier in all blocks which refer to it. On the library tape, a mnemonic label and identifier list are separated from the coding by several inches of blank tape. The mnemonics must not be loaded into the tape-reader if the tape is to be translated by T2.

1.3 ERROR INDICATION

If $\mathrm{a}<0$ then - is output continuously.
1.4 METHOD USED
1.4.1 General Case.

The single-length entry causes to to be
held as a(1. s.).
QSQRT uses ${ }^{N}$ ewton's method to calculate the square-root of a double-1ength number. The formula used for iteration is
$\mathrm{X}_{\mathrm{n}+1}=\frac{1}{2}\left(\mathrm{X}_{\mathrm{n}}+\mathrm{a} / \mathrm{X}_{\mathrm{n}}\right)$
If $a<2^{-1 \eta}$ then $X_{0}=\sqrt{2^{-1 y}}$
If a 2^{-17} then $X_{o}=1-2^{-17}$
When $X_{n+1} \quad X_{n}$ then X_{n} is the best approximation to a
1.4.2 Special Cases -

If $a=0$ then $\sqrt{a}=0$
If a $1-2^{-1 \eta}$ then $\sqrt{a}=1-2^{-1 \eta}$

1.5 TIME TAKEN

(The time for the single-length entry is in brackets). If the final approximation (see Paragraph 1.4) is X_{n} then the time taken is $680(805)+375 \mathrm{n}$ microseconds The maximum time is $5.3(5.5)$ milliseconds If $a=0$ the time taken is $250(375)$ microseconds If $a \geq 1-2^{-17}$ the time taken is $300(450)$ microseconds.
1.6 STORE USED

52 consecutive locations and the appropriate B register.

